ELECTRODE-CATALYZED [2+2]CYCLOREVERSION REACTION OF PHENYLATED BIS-HOMOCUBANES¹⁾

Yasutake TAKAHASHI, Katsuhiro SATO, Tsutomu MIYASHI, and Toshio MUKAI*

Photochemical Research Laboratory, Faculty of Science,

Tohoku University, Sendai 980

The constant potential anodic oxidation reaction of phenylated bis-homocubanes involved the [2+2]cycloreversion to give the dienes via a radical chain mechanism.

The photoinduced [2+2]cycloaddition of olefins and the photoinduced [2+2]cycloreversion of cyclobutanes to olefins have been demonstrated in many cases to involve a variety of key intermediates.

In our studies on the photosensitized electron-transfer [2+2]cycloreversion of 1 to 2, the cation radicals ($1^{\frac{1}{2}}$) and ($2^{\frac{1}{2}}$) were suggested to serve as key intermediates to achieve the radical chain formation of 2 from $1^{\frac{1}{2}}$. The structural elucidation of $1^{\frac{1}{2}}$ and $2^{\frac{1}{2}}$ by CIDNP technique revealed their important roles for a chain process, providing that $1^{\frac{1}{2}}$ has a shallow but discreat energy minimum and irreversiblly cyclorevertes to $2^{\frac{1}{2}}$ much faster than the isomerization of $2^{\frac{1}{2}}$ to $2^{\frac{1}{2}}$.

In order to gain further insight into the reactivities of $l^{\frac{1}{2}}$ and $l^{\frac{1}{2}}$, we investigated the constant potential anodic oxidation of $l^{\frac{1}{2}}$. Herein we report that the anodic oxidation of $l^{\frac{1}{2}}$ also involves the facile cycloreversion to $l^{\frac{1}{2}}$ via a chain mechanism. The electrolyses of $l^{\frac{1}{2}}$ and $l^{\frac{1}{2}}$ were conducted at 200 mV anodic site to each oxidation potential $(E_{1/2}^{\text{OX}}(l^{\frac{1}{2}})=+1.41 \text{ V}$ and $E_{1/2}^{\text{OX}}(l^{\frac{1}{2}})=+1.09 \text{ V}$ vs. SCE) by using a platinum gauze electrode. When a solution of $l^{\frac{1}{2}}$ in 20 ml of dry acetonitrile containing 0.1 M tetraethylammonium perchlorate was subjected to electrolysis, the [2+2]cycloreversion efficiently took place to give $l^{\frac{1}{2}}$ in high yields as shown in Table 1. The anodic oxidation of $l^{\frac{1}{2}}$, however, did not afford $l^{\frac{1}{2}}$ under the same conditions, indicating the irreversible rearrangement of $l^{\frac{1}{2}}$ to $l^{\frac{1}{2}}$.

It should be noted that 1 rearranges to 2 with less electricity than a theoretical one required for a one-electron oxidation process. This observation indicates the operation of a chain process, the efficiency of which can be assessed by calculating an average chain length (Table 1). From the results shown in Table 1, a

Substrate	[긡] ^{a)}	Yi	eld/% b)	Time	Theoretical coulombs	Coulombs passed ^{c)}	Average chain length ^{d)}
	M	2	recovery	min	C	С	
la	0.02	99	0	10	38.6	8.0	3.8
la	0.005	81	3	10	9.65	7.2	0.3
łk	0.02	88	2	2	38.6	2.3	15.8
łk	0.005	74	0	2	9.65	1.8	4.4

Table 1. Electrode-catalyzed [2+2]cycloreversion of $\frac{1}{k}$ to $\frac{2}{k}$

a)20 ml of 0.1 M solution in Et_3NClO_4 in acetonitrile. b)Determined by NMR. c)Obtained by current vs. time plots. d)Defined as average chain length= (theoretical coulonmbs to consume $\frac{1}{6}$ /coulombs passed)-1.

plausible mechanism can be proposed as shown in Scheme 1. The initial electron-transfer on the electrode generates $1, \frac{1}{4}$ which very facilely isomerizes to $2, \frac{1}{4}, \frac{3}{4}$. Although 2 can be directly formed from $2, \frac{1}{4}$, the second electron-transfer from 1 to $2, \frac{1}{4}$ operates as a major pathway to form 2 and completes a radical chain process. This mechanism can be supported by the facts that the oxidation potentials of $2, \frac{1}{4}$ and $2, \frac{1}{4}$ ($2, \frac{1}{4}$)=+1.40 V and $2, \frac{1}{4}$ ($2, \frac{1}{4}$)=+1.40 V and $2, \frac{1}{4}$ ($2, \frac{1}{4}$)=+1.09 V vs. SCE) are nearly equal to those of $1, \frac{1}{4}$ and $1, \frac{1}{4}$, respectively, and that a decrease in the concentration of $1, \frac{1}{4}$ resulted in a decrease in an average chain length. The electrolytic results shown here accord with the fact that the photo-sensitized cycloreversion of $1, \frac{1}{4}$ to $1, \frac{1}{4}$ occurs with the limited quantum yield over unity and thus further confirm a radical chain mechanism induced by an initial electron-transfer generation of $1, \frac{1}{4}$.

Scheme 1.

References

- 1) Organic Thermal Reactions 58. Part 57, see, Y. Ooba, T. Kumagai, and T. Mukai, Chem. Lett., 1983, 1361.
- 2) T. Mukai, K. Sato, and Y. Yamashita, J. Am. Chem. Soc., 103, 670 (1981); K. Okada, K. Hisamiysu, T. Miyashi, and T. Mukai, J. Chem. Comm., Chem. Commun., 1982, 974.
- 3) H. D. Roth, M. L. M. Schilling, T. Mukai, and T. Miyashi, Tetranedron Lett., 1983, 5815.
- 4) E. L. Clennan, W. Simmons, and C. W. Algren, J. Am. Chem. Soc., 103, 2098(1981).

(Received July 2, 1984)